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ABSTRACT

The National Health and Nutriton Examination Survey (NHANES) collects important nutritional and
health-related data on the civilian noninstitutionalized U.S. population and important subgroups. High
rates of unit nonresponse in NHANES, together with some residual item nonresponse, lead to high rates
of missingness on key survey variables. We discuss a project to statistically adjust for nonresponse in
NHANES llI, Phase 1 (1988-1991) using multiple imputation (Rubin 1987). A data file consisting of 27 key
variables for 12,392 sampled individuals was multiply imputed for both item and unit nonresponse, using
techniques of iterative Bayesian simulation via Markov chains described by Schafer (1 991, 1993). The
processes of data editing, model selection, and simulation of missing data are discussed along with related
computational issues.  Exploratory analysis of the imputed values suggests that both the marginal
distributions of the survey variables, and important relationships between them, were accurately preserved.
Multiple-imputation interval estimates for scalar quantities of interest (means, proportions, subdomain
means, etc.) were, in some cases, dramatically wider than corresponding intervals that ignored the
missing-data uncertainty. This projectis significant in that it represents the first successful implementation
of proper multiple-imputation methodology in a large multivariate setting, and consequently, it gives useful
insight into the feasibility of multiply imputing NHANES and other large multipurpose sample surveys on
an ongoing basis.
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1. INTRODUCTION

1.1 OVERVIEW OF NHANES Il

The National Health and Nutrition Examination Survey (NHANES) is a periodic national survey conducted
by the National Center for Health Statistics (NCHS). The ongoing Third National Health and Nutrition
Examination Survey (NHANES 1il) is the seventh in a series of similar surveys conducted by NCHS since
the 1960's. NHANES Il is designed to provide national statistics on health and nutritional status for the
civilian noninstitutionalized population aged 2 months and older. The data are obtained through household
interviews, which collect socio-demographic and medical history information, and through standardized
physical examinations, which include a variety of physical measurements and physiological tests. The
physical examinations are conducted in specially equipped mobile examination centers (MEC's) that are
transported to each survey location. NHANES IIl has been divided into two 3-year surveys--Phase 1
(1988-1990) and Phase 2 (1991 -93)--in order to provide national estimates for each 3-year period as well
as for all six years.

'Views expressed are those of the authors and do not necessarily reflect those of the National Center for Health
Statistics. Thanks to Donald B. Rubin and Roderick J. A. Little for valuable suggestions throughout this projectincluding
an extensive written report (Little and Rubin 1992)
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NHANES Il is based on a complex, multistage area probability sample design with a total sample size of
approximately 40,000 persons. Children under 5 years of age, adults age 60 years and older, Mexican
Americans, and Black Americans are sampled at higher rates than other persons in order to provide
accurate estimates within important demographic subpopulations.  Details of the sample design of
NHANES Ill have been previously published by Ezzati et al. (1992). Phase 1, with which this article is
concerned, had a total sample size of 20,277 persons.

1.2 NONRESPONSE IN NHANES Il

NHANES, like most sample surveys, suffers from both unit and item nonresponse. In an attempt to
maximize response rates, special procedures have been implemented including extensive publicity in each
survey location, a home examination especially targeted for the older population, a remuneration to all
survey participants, and a report of major medical findings. Despite these efforts, however, nonresponse
rates remain quite high, both in the personal interview and in the MEC examination. Experience with
previous NHANES surveys has led us to expect overall unit nonresponse rates of about 10% and 25% in
the personal interview and physical examination, respectively. These high rates of unit nonresponse, when
combined with various levels of item nonresponse pertaining to specific questions, examination
components, or physical measurements, lead to rather high overall rates of missingness on some key
survey variables.

The patterns of nonresponse in NHANES il are heavily influenced by the process of data collection, which
occurred primarily in three stages:

1. Household screening. When a household was selected into the NHANES Ill sample, a brief
screening interview was conducted to determine household size and the age, sex, and race
of every household member. This information was required for the final stage of sampling in
which individuals were selected within households. @ As a byproduct of this screening
procedure, the basic demographic characteristics--age, sex, and race--are known for each
sampled person; no data are missing for these items.

2. Personal interview. After the household screening and final stage of sampling, NHANES
personnel conducted interviews to obtain detailed health and nutritional information for sampled
persons. Among the 20,277 sampled persons in Phase 1 of NHANES lll, 17,464 (86%) were
successfully interviewed. Refusal or inability to answer specific interview questions led to
some additional item nonresponse, at typical rates of about 1-5% per item.

3. MEC examination. Upon completion of the personal interview, sampled persons were
requested to report to the MEC for the physical examination. Among the 17,464 interviewed
persons in Phase 1, 15,884 (91%) reported to the subsequent physical examination, resulting
in an overall examination rate of 78%. The MEC examination included a number of
components or groups of procedures: anthropometric (body size) measurements, blood
pressure readings, blood and urine specimens, 24-hour dietary recall, dental examination,
spirometry, etc. In the examinations, of course, not all items were successfully recorded for
all examinees. Occasionally, examinees left the MEC before the examination could be
completed, or refused a specific procedure (e.g., venipuncture), causing an entire group of
items to be missing. Data recording errors and other mistakes by personnel also caused
single items or groups of items to be missing. Among examined persons, nonresponse rates
for individual MEC items were on the order of 5-8%.

At the end of this data collection process, many key variables from the MEC examination were missing at
rates relative to the entire sample of 30% or more. A schematic representation of data from NHANES IlI
Phase 1 depicting the pattern of missingness is shown in Figure 1.
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FIGURE 1. Schematic representation of data from NHANES lll Phase 1 showing unit and item
nonresponse, sampled adults only. Rows represent sampled persons, columns represent
survey variables, and question marks (?) denote missing items.

Screener Personal
questionnaire interview MEC Examination
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2 ? ?
3 ? 7 ? ?
?
? ? ?
? ?
?
? ? ? ?
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?
? ?
10,541 ?
12,392

1.3 NONRESPONSE ADJUSTMENTS

As described above, the major portion of the missing data in NHANES is due to unit nonresponse in the
interview and/or examination, with item nonresponse comprising a relatively small part. It is common
practice to compensate for unit nonresponse by weighting-class adjustments (Madow, Olkin, and Rubin,
1983; Cox, 1991). Weighting-class adjustments are usually performed by grouping respondents and
nonrespondents together into a relatively small number of classes or cells, assigning the nonrespondents
survey weights of zero, and inflating the weights of the remaining respondents proportionately so that the
total weight of the units within cells is preserved. After this weighting adjustment, any residual item
nonresponse that remains is typically handled by imputation--i.e., the missing items are filled in with
plausible values gleaned from other similar units in the dataset, or with predicted values obtained from a
model.

Weighting-class adjustments for unit nonresponse have been used in previous NHANES surveys and were
also planned for NHANES Ili (Ezzati and Khare, 1991, 1992). Survey weights for the examined persons
were inflated up to the level of the full sample. This adjustment was performed within broad classes
defined by geography, demographic variables, and family income. Since income is available only from the
personal interview and is itself subject to nonresponse, it had to be imputed before the weighting-class
adjustment could be carried out. After the weighting adjustment, little or no imputation was used to
compensate for the remaining item nonresponse in MEC examination; missing items were typically left
blank and omitted from further analyses.

One disadvantage of this weighting-class approach is that very little information obtained from the personal
interview was used in the nonresponse adjustment for the non-examined. In Phase 1, over one-third (36%)
of the non-examined persons had been successfully interviewed: with the exception of income, however,
none of the information gleaned fram these interviews was used in the formation of weighting classes.
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Yet, the personal interview provided many variables that are potentially powerful predictors for some of the
MEC examination items. The two most striking examples of this are:

1. Body measurements. In the personal interview, sampled persons were asked to report their
own height and weight. One would naturally expect these self-reported values to be highly
correlated with many of the body measurements recorded in the subsequent MEC examination,
such as height, weight, waist and buttocks circumference, skin fold measurements, etc.
Exploratory analyses revealed that self-reported height and weight were indeed very highly
correlated with MEC height and weight (r = .876 and .967 on the log scale, respectively).

2. Blood pressure. As part of the interview, blood pressure readings were taken in the subject's
home. These blood pressure readings from the interview were found to be highly correlated
with blood pressure readings from the subsequent MEC examination, with observed
correlations on the order of r = .6.

In addition, many other responses to interview questions regarding smoking, hypertension and high blood
cholesterol, etc. are potentially useful predictors for many MEC items. Thus, there seem to be significant
potential gains, both in reducing nonresponse bias and increasing precision, from including more of the
interview variables in the nonresponse adjustment.

1.4 EXAMINING IMPUTATION ALTERNATIVES

In 1992, NCHS initiated a project to investigate alternatives to the current NHANES nonresponse
adjustment methodology, including imputation (Little and Rubin, 1992). Imputation, although typically more
difficult to carry out in practice than weighting-class adjustments, offers some potentially important
advantages including the reduction of variance and the opportunity to use more covariate information (Little,
1986). Moreover, through the technique of multiple imputation (Rubin, 1987), it is possible to assess the
impact of missing-data uncertainty on the variances of estimators and revise variance estimates to reflect
this additional uncertainty.

Applications of multiple imputation to large surveys such as NHANES have been previously hampered by
the difficulty of generating proper multiple imputations in multivariate settings. In multivariate datasets,
complex patterns of missingness cause the predictive distributions of the missing values, even under simple
probability models, to be intractable and difficult to simulate directly. Recent advances in techniques of
Bayesian computation, however, now make it possible to generate proper multiple imputations in
multivariate settings under a variety of useful models for both continuous and categorical data (Schafer,
1891). Multiple imputations can now be routinely generated using iterative simulation schemes based on
Markov chains, including the Gibbs sampler and the Metropolis algorithm (Geman and Geman, 1984;
Gelfand and Smith, 1990; Miiller, 1991).

1.5 THE NHANES Il MULTIPLE IMPUTATION PROJECT

To test the applicability of this new multiple-imputation methodology to NHANES, a data file was prepared
consisting of approximately 30 key variables from the screener questionnaire, personal interview, and MEC
examination in Phase 1 of NHANES Ill. Important features of this dataset, including patterns and rates of
nonresponse, are discussed in Section 2. In Section 3 we describe the process by which we edited the
data and devised a muitivariate model to describe the joint probability distribution of all the variables for
purposes of imputation. Section 4 discusses the computational details of estimating the parameters of this
multivariate model and simulating the multiple imputations. Exploratory analyses of the imputed datasets,
including graphical displays and multiply-imputed interval estimates, are described in Section 5, and Section
6 presents concluding discussion and final remarks.
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TABLE 1. MEC variables in the NHANES il imputation project.

Name % missing Description

Body measurements

HT 315 height

WT 33.2 weight

WST 32.9 waist circumference

BUT 328 buttocks circumference
Blood pressure

BP1K1D 33.2 tirst systolic pressure

BP1K5D 333 first diastolic pressure

BP2K1D 334 second systolic pressure

BP2K5D 33.5 second diastolic pressure

BP3K1D 334 third systolic pressure

PB3K5D 33.6 third diastolic pressure
Lipids

TCRES 333 total serum cholesterol

HDRES 33.9 HDL cholesterol

2. THE DATA

2.1 MEC VARIABLES

Because the number of variables recorded in NHANES is enormous, we decided to narrow the goal of our
project to producing a set of good quality multiple imputations for just a few key variables from the MEC
examination. In particutar, we decided to focus attention on just twelve variables from three MEC
components--body measurements, blood pressure, and lipids. Also, because the personal interview and
examination procedures were substantially different for adults and children, we restricted our study to the
12,391 adults (age 17 years and older) in the Phase 1 sample. Among these adults, only 8,959 (72.5%)
completed both the interview and the examination; 1,851 (14.9%) were neither interviewed nor examined,
and 1,582 (12.8%) were interviewed but not examined. Following the pattern of Figure 1, every adult who
missed the interview also missed the examination. The twelve MEC variables with their overall rates of
missingness, reflacting both unit and item nonresponse, are listed in Table 1.

2.2 PRE-MEC VARIABLES

Although our primary interest was in imputing the twelve MEC variables, we also included in our analysis
a number of additional variables from the screening and personal interviews. These pre-MEC variables
were judged to contain potentially valuable information for imputing the missing MEC items. Pre-MEC
variables were explicitty modeled together with the MEC variables, and missing MEC variables were
imputed conditionally upon these pre-MEC variables whenever available. When the pre-MEC variables
were missing, they too were imputed conditionally upon any pre-MEC or MEC variables that were present.

When imputing variables subject to nonresponse, conditioning on auxiliary variables has some well known
benefits (e.g., Little, 1986). First, if the probability of nonresponse for a variable in question is related to
the auxiliary variables, then conditioning will tend to reduce nonresponse bias. Second, if the auxiliary
variables are related to the variable in question, then conditioning will also tend to reduce variance, in much
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the same way that the classical survey techniques of ratio and regression estimation tend to reduce
variance. For the purpose of reducing mean squared error of prediction, then, an imputation procedure
ought to make maximal use of whatever covariate information is available.

Another important, but less well known, benefit of including auxiliary variables arises when attempting to
reflect missing-data uncertainty. Multiple imputation will provide valid inferences only if the imputations
exhibit enough variability to represent our true state of knowledge, in a conditional or a posteriori Bayesian
sense, about the missing values (Rubin, 1987). Omitting an auxiliary variable from the imputation
procedure is equivalent to specifying, say, a regression modsl in which the coefficient of the auxiliary
variable is set to zero a priori. Fixing parameters of the imputation model to zero, when the data do not
provide strong evidence that they are truly zero, will tend to produce multiple imputations having too little
variability.

One set of auxiliary variables that requires careful consideration is the set that conveys information about
the sample design. Surveys with complex sampling plans have important features--unequal probabilities
of selection, stratification, and clustering--that distinguish them from simple random samples. The
observational units in complex surveys are typically not exchangeable and cannot be appropriately
described by simple probability models that assume, for example, that units are independent and identically
distributed. Recently, multiple-imputation inference has been criticized for failing to produce accurate
variance estimates in some hypothetical counterexamples (Fay, 1992). In all of these "counterexamples,"
however, the multiple imputations are not drawn from the correct predictive distribution, the distribution that
conditions fully on the observed data including indicators of the sample design; invariably, some important
information is left out of the imputation model. In order to guarantee that multiple imputation inferences
are valid, essential information about the sample design must be included in the analysis.

TABLE 2. Pre-MEC auxiliary variables in the NHANES Iil imputation project.

Name % missing Description
PSU identifier

STAND 0.0 examination location (101-144)
Demographics

AGE 0.0 age (17-39, 40-59, 60+)

SEX 0.0 gender (male, female)

RACE 0.0 race/ethnicity (Black, Mex-Amer, Other)
Personal interview

ACTV 20.6 self-reported activity status

AD1 18.5 diabetes ever diagnosed?

AE2 19.3 hypertension ever diagnosed?

AE7 62.4 high cholesterol ever diagnosed?

AF10 20.6 heart attachk ever diagnosed?

ARS3 18.3 smoke cigarettes now?

ALCO 18.6 beer/winefliquor?

AHT 22.7 self-reported height

AWT 21.6 self-reported weight

ASYS 21.9 interview average systolic b.p.

ADIAS 21.9 interview average diastolic b.p.

Finally, apart from considerations of mean squared error and variance estimation, we also felt it was
essential to include auxiliary variables to preserve important statistical relationships in the dataset,
especially those relationships that may be of interest to potential secondary users of the data. In large
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datasets like NHANES, relationships that seem trivial in other settings may be of great scientific interest.
For example, our exploratory analyses revealed a highly significant (p < .0001) relationship between
response to the interview question, "Has a doctor ever told you that you had a heart attack?" and HDL
cholesterol; the partial correlation between these two variables given other important covariates, however,
was only .078 (see Section 3.2 and Table 5). If this interview question was left out of the imputation
procedure, then the mean squared error for estimating population average levels of HDL cholesterol would
increase by only a negligible amount. If the imputed data were later used in a secondary analysis of
relationships between heart disease and lipids, however, then leaving the question out of the imputation
model could seriously dampen this small but real relationship.

All of the above arguments tend to favor large imputation models over small ones, encouraging us to
impute conditionally on any auxiliary variable that might be important. Balanced against these
considerations, of course, are computational limitations that may prevent us from fitting a model as large
as we would like. As the number of variables grows, memory requirements for the model-fitting and
imputation algorithms increase dramatically. Keeping the model to a reasonable size required us to make
some tough choices in variable selection. Starting with about twenty candidate auxiliary variables, we
reduced the list, on the basis of exploratory regression analyses (described below) and {\it a priori}
considerations, to the fifteen variables shown in Table 2. Information on the stratified cluster design of
NHANES was reflected in STAND, a 44-level categorical variable indicating the mobile examination location
or primary sampling unit (PSU) to which a person belonged. Further information pertinent to the final stage
of sampling was contained in the demographic variables AGE, SEX, and RACE. Eleven variables from the
personal interview were included because they were found to have statistically significant and scientifically
important relationships to one or more of the twelve MEC items.

3. BUILDING THE MODEL
3.1 DATA CLEANING AND REMOVAL OF OUTLIERS

Initial exploration of the NHANES Ill imputation data revealed a substantial number of outliers, particularly
in the body measurements. These outliers for the most part reflected gross errors in the data recording
and capture process; if allowed to remain in the dataset, they could have exerted an undue influence on
the parameter estimates and artificially inflated the variability of the multiple imputations. For these
reasons, the data were screened by a variety of informal techniques, and observations that were identified
as being clearly erroneous were deleted (recoded as missing).

First, a number of measurements were deleted simply because they were out of the range of physical
plausibility--e.g., self-reported or measured heights less than 80 cm or diastolic blood pressure readings
below 20 mm.  After this initial variable-by-variable screening for out-of-range values, additional unusual
observations were identified using bivariate scatterplots. Scatterplots were created for pairs of body
measurements that are known to be highly correlated. Points located far outside the bivariate point clouds
were highlighted and identified interactively using an X11 graphics window on a Unix workstation and the
*identify" function in S (Becker, Chambers, and Wilks, 1988). These questionable data were not
automatically deleted but were earmarked for further study.

Finally, regression models were fit to each of the body measurements using the other body measurements
as predictors (suspect points were excluded from the fitting). Each questionable body measurement was
then compared to its fitted value from the regression, and if the standardized residual was exceedingly
large, the offending measurement was deleted. The decision to delete a suspect measurement was
carried out not according to a set of strict rules, but on an informal, case-by-case basis. The approach
used was conservative in that if any doubt existed about whether a recorded ‘value was erroneous, the
value was allowed to remain. It is known that gross errors occur naturally in self-reported height and
weight--e.g., some obese persons will seriously underreport their actual weights. Every reasonable effort
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was made to preserve the integrity of the original data. Based on this informal analysis, a total of about
150 measurements were deleted.

3.2 REGRESSION MODELING TO CHOOSE AUXILIARY VARIABLES

After removing the outliers, we performed some exploratory regression analyses to investigate how the
pre-MEC auxiliary variables under consideration were related to the MEC variables of primary interest.
Linear regression models were fit to the following eight dependent variables from the MEC examination:
LGHT, LGWT, LGWST, and LGBUT (height, weight, waist circumference and buttocks circumference on
a log scale), LGDSYS (the average of the three systolic blood pressures BP1K1D, BP2K1D, BP3K1D on
a log scale), DDIAS (the average of the three diastolic blood pressures BP1K5D, BP2K5D, BP3K5D),
LGTCRES (log serum total cholesterol), and LGHDRES (log HDL cholesterol). The goal of this modeling
effort was to identify important relationships between the auxiliary variables and the MEC variables, and
to reduce the twenty or so candidate auxiliary variables to a somewhat smaller set to be included in the
final multivariate imputation model.

The philosophy of selecting variables for an imputation model should be somewhat different from the
traditional variable-selection strategies found in textbooks on multiple regression. In the traditional
approach, a variable is not included in a model unless it is deemed "significant--i.e., unless one cannot
reject the hypothesis that its coefficient is zero at some prespecified level such as .05. This traditional
approach places a high priority on model parsimony (i.e., having no unnecessary covariates) and on model
interpretability. In imputation, however, the primary goal is prediction-- to generate imputed values with the
desirable statistical properties outlined in Section 2.2. When building an imputation model, then, one ought
also to include variables that fall into these categories:

1. Variables that are considered important on a priori grounds. For example, since we knew that
many of the resuits of NHANES would be published for subdomains defined by age, sex, and
race, we considered it essential for the full AGExSEXxRACE effect to be included in the
imputation model.

2. Variables that conveyed essential information about the complex sample design.

3. Variables that have large coefficients and large standard errors, even if the coefficients may
not be significantly different from zero. Including these variables may be important for creating
multiple imputations with enough variability to reflect the actual uncertainty about the missing
values.

To simplify the modaeling effort at this stage, we fit regressions using only the complete cases--the sampled
adults for whom all the MEC and auxiliary variables were observed--which numbered about 2,900. The
regression model for predicting each of the eight dependent MEC variables included the other seven as
predictors--e.g., the model for LGTCRES included LGDSYS, DDIAS, LGHDRES, LGHT, LGWT, LGWST,
and LGBUT--as well as various combinations of candidate auxiliary variables. All regression models
included main effects for STAND, a 43 degree-of-freedom set of dummy indicators to distinguish between
primary sampling units, and the full 17 degree-of-freedom cross-classification by AGE, SEX, and RACE.
All other pre-MEC variables were included either as continuous or as single degree-of-freedom dummy
indicators. Self-reported height and weight, as well as systolic blood pressure from the interview, were
expressed on a log scale.

Including about 100 regressors left us with 2,800 degrees of freedom for assessing significance. With such
a large sample size, even very small effects in the data could be detected with high power. As a result,
virtually every pre-MEC variable was found to be significantly related to at least one of the MEC variables.
The criterion of statistical significance alone would have included almost every variable and would have
produced a model of unmanageable size. In the end, we had to eliminate a few auxiliary variables that
did not seem important on a priori grounds, and whose effects, although statistically significant, were of
relatively small magnitude in comparison to the others.
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Some results of the "final* regression models, which include only those auxiliary variables chosen for the
imputation model, are displayed in Tables 3-5. Table 3 displays the eight values of the muitiple correlation
A2, which provide insight into how well the missing MEC items can be predicted on the basis of other MEC
and pre-MEC variables. The matrix in Table 4 displays levels of significance for each of the pre-MEC
variables in predicting the eight dependent MEC variables. In Table 4, as well as in Table 5, DEMOG
refers to the 17 degrees-of-freedom effect of AGEXSEXxRACE.

One useful measure of effect size in multiple regression is the {\it partial correlation coefficient}, which
measures the correlation between one explanatory variable and the dependent variable given all the other
explanatory variables. The partial correlation is easily calculated as

F

r= F+dip/di,

where F is the F-statistic for testing the null hypothesis that the explanatory variable of interest has no
effect, and df, and df, are the numerator and denominator degrees of freedom, respectively. Whendf, = 1,
the partial correlation is typicaily given the same sign as the estimated coefficient of the explanatory

TABLE 3. Multiple correlation R? statisitcs for prediction of MEC variables in
exploratory regression models.

Dependent Variable
LGHT LGWT LGWST LGBUT LGDSYS DDIAS LGTCRES LGHDRES
.923 976 .876 .882 712 .605 319 318

TABLE 4. Significance of pre-MEC variables in exploratory regression analyses: ‘= significant
the level .10 **= significant at the level .05; ***=significant at the level .01.

Dependent Variable
LGHT LGWT LGWST LaBUT LGDSYS DDIAS LGTCRES LGHDRES
ST A N D - ew L] " i ol -l b
DEMOG| *** aoe - e - o - o
ACTV - Ll he L]
AE 2 L] -l -he
AF 1 0 - - L 2
ALCO -l L » - ol
LGAHT = - b
LGAWT b . e
LGASYS wee bl .
ADIAS - oo

variable of interest. When df, > 1, as in STAND and DEMOG, r can be interpreted as the partial correlation
between the dependent variable and the best linear combination of the components of the explanatory
variable. Partial correlation effect sizes between the MEC and pre-MEC variables are displayed in Table 5.
For interpretation, we note that with df,=2,800 error degrees of freedom, a partial correlation of only r=.037
is significant at the .05 level when df,=1. For df,=17 and df,=43, significance at the .05 level is achieved
by partial correlations of .099 and .144, respectively. h
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3.3 THE IMPUTATION MODEL

The most straightforward way to generate proper multiple imputations in a multivariate setting is to specify
a parametric probability model for the complete (missing and observed) data along with a prior distribution
for the parameters, and then simulate values from the conditional distribution of the missing data given the
observed data. Because the NHANES Ill imputation file contains both continuous and categorical variables,
we chose to work with a special case of the model for mixed continuous and categorical multivariate data
introduced for discriminant analysis by Krzanowski (1980, 1982) and applied to incomplete multivariate data
by Little and Schlucter (1985).

TABLE 5. Partial correlation effect sizes for pre-MEC variables in exploratory regression

analyses. Except for STAND and DEMOG, all pre-MEC variables are one degree of freedom with
signs () indicating the direction of the effect.

Dependent Variable

LGHT LGWT LGWST LGBUT LGDSYS DDIAS | LGTCRES LGHDRES

STAND 15 20 20 .18 .24 28 15 18
DEMOG 15 26 45 53 21 20 22 19
ACTV 04 -.04 08 06 -.01 -.01 00 .00
AD1 .02 -.03 -.06 10 .07 09 .07 .00
AE2 -.01 02 .01 .03 .08 .06 -.08 -.01
AE7 -.05 02 02 05 .00 .00 -.35 .08
AF10 .02 -03 01 00 -.03 .03 .00 .08
AR3 -.01 .07 -.10 07 02 04 -.01 .08
ALCO -.04 -.04 02 .03 .05 -.02 .00 .15
LGAHT .84 .00 00 -.02 05 -.02 -.01 .08
LGAWT .02 74 03 .02 .02 -.03 -.06 -.02
LGASYS .02 -.01 03 -.01 57 -.25 .01 -.03
ADIAS -.02 .00 .00 -.01 .25 53 .00 .02

Let Y denote the matrix of complete data, which can be partitioned as Y=(W,Z), where W is an nxp matrix
of categorical variables, and Z is an nxq matrix of continuous variables. Let W, W,,...W, and Z,,Z,,....Z,
denote the variables in W and Z, respectively. Suppose that the categorical variable W, takes d, possible
levels, so that each row of W can be classified into a cell of a p-dimensional contingency table with total

number of cells equalto D=]]P . d,. Let{x,_ ] denote the cell counts of this contingency table, where
=1 1 ik

Xt is the number of rows of W for which W, = i\W, =j,..W_=t. It will also be notationally convenient to
index the cells of the contingency table by the single subscript d, ranging from 1 to D, so that the cell
frequencies may be written more simply as {x,}.

The multivariate distribution for Y is most easily described in terms of the marginal distribution of W and
the conditional distribution of Z given W. We assume that the marginal distribution of W is a multinomial
distribution on the cell counts {x,_} , with cell probabilities denoted by x = {x,_]} = k{r,}. Conditionally upon
W, we assume that the rows of Z are multivariate normal with mean vectors that vary between cells of the
contingency table, but with a common covariance structure for all cells. That is, given that an individual's
categorical variables determine that he or she should be placed into cell d, then his or her values of
(Z,,Z,~,Z;) are assumed to be N(u,X) independently of all other individuals. Letting p = (M B2 Hp)"
denote the Dxq matrix of conditional means, we can write the unknown parameters as 6 = (n,u,X).

Without any restrictions on 8 except the obvious one that E‘:_‘ ®y = 1, thismodel has (D-1)+Dg+g(q+1)/2

free parameters. As the number p of categorical variables grows, the contingency table typically becomes
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too sparse to estimate the probabilities =, for the individual cells, much less the mean vectors p, within
cells. For this reason, we reduce the dimensionality of the parameter by allowing loglinear constraints on
the cell probabilities x, andfor ANOVA-like constraints on the cell means . Loglinear constraints are a well
known device for fitting parsimonious models to contingency tables (e.g., Bishop Fienberg, and Holland,
1975) and will not be described here. Let A be a Dxr design matrix that relates the within-cell means p
to an rxq matrix of regression coefficients § in the manner p=Ag, where rank(A)=r<D. In other words, we
will still allow the means p, to vary from cell to cell, but require that each column of u lie in the
r-dimensional linear subspace of R® spanned by the columns of A. By saturating the loglinear model for
z and taking A=l (the identity matrix), we obtain the most general model with (D-1)+Dq+q(q+1)/2 free
parameters as a special case.

Among the 27 variables listed in Tables 1 and 2, sixteen (all of the MEC variables in Table 1, plus AHT,
AWT, ASYS, and ADIAS) are continuous while the remaining eleven consist of ordered or unordered
categories. STAND and RACE are unordered with 44 and 3 levels, respectively; AGE and ACTV are
three-point ordinal scales; and the remaining seven variables are dichotomous. Attempts to fit a model with
eleven categorical variables proved futile, because the contingency table with D = 44 x 3* x 27 = 152,084
cells was much too sparse to allow for stable estimation of the within-cell means p, unless undesirably
strong restrictions were introduced on p through the design matrix A. Further elimination of categorical
variables to reduce the dimensionality of the contingency table was undesirable, because we considered
all eleven to be important. In particular, retention of the 44-level classification by STAND, even though this
variable was one of the main causes of sparseness, was considered essential to ensure that sample-design
information was properly reflected in the multiple imputations.

After considering several alternatives, we finally decided to retain only four variables—AGE, SEX, RACE,
and STAND—in the categorical portion of the model, treating the other 23 variables as continuous and
conditionally multivariate normal given these four. The contingency table for AGE x SEX x RACE x STAND
had 792 cells for 12,392 observations. Because of the sample design, this table was filled in rather nicely,
with only 157 empty cells. Modeling the six dichotomous variables AD1, AE2, AE7, AF10, AR3, and ALCO,
and the three-point ordinal variable ACTV, as continuous and conditionally normal was only a very rough
. approximation at best. We considered this approximation to be acceptable, however, because these seven
variables were not among the variables of primary interest in our study. The variables of greatest interest
were the twelve MEC variables listed in Table 1. Pre-MEC variables were intended to serve primarily as
predictors, although they too were imputed whenever missing. Moreover, some limited evidence suggests
that eroneously modeling the seven discrete variables as continuous did not have a strong adverse effect
on the final imputations; when the continuous imputes for these seven were rounded off to the nearest
categories, the distributions of the imputed values were quite reasonable and looked very similar to the
distributions actually observed in the sample (Section 5.1).

In the final analysis, we modeled the 635 nonempty cells of the contingency table for
AGE x SEX x RACE x STAND by a saturated multinomial distribution, treating the 157 empty cells as
structural zeros. (This specification had no effect on the distribution of imputed values, because these four
variables were never missing.) The 23 remaining "continuous® variables were then modeled as a
multivariate normal linear regression. To make the normality assumption more plausible, body
measurements, lipids, and systolic blood pressures were expressed on a log scale. Each of the 23
individual regressions included an intercept, 17 dummy indicators to represent the full AGE x SEX x RACE
interaction, and 43 dummy indicators to represent STAND, for a total of 23(1 + 17 + 43)= 1403 estimated
regression coefficients and 23(24)/2 = 276 residual variances and covariances. The total number of
unknown free parameters in this model was thus (635 - 1) + 1403 + 276 = 2313.
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4. MODEL FITTING AND IMPUTATION
4.1 TECHNIQUES FOR ESTIMATION AND SIMULATION

A full description of the techniques we used to fit our model and generate multiple imputations is beyond
the scope of this article and can be found in Schafer (1991, 1993); we present only the basic strategy and
a few computational details.

An iterative algorithm for maximum-likelihood (ML) estimation with incomplete data under the muitivariate
model described above is given by Little and Schiucter (1985), and is an example of
ECM--"Expectation-Conditional Maximization" (Meng and Rubin, 1992), a generalization of the well known
EM algorithm. A general version of ECM for this multivariate model, along with additional algorithms for
parameter simulation and multiple imputation described below, have been implemented for use in the
statistical package S with external Fortran subroutines (Schafer 1991, 1993).

To simulate missing data under an assumed value of the parameter, such as 6 = 6 (the ML estimate),

would be relatively straightforward. Under our model, the vector of missing observations for each person
has, given his or her observed data, a multivariate normal distribution with parameters that can be
calculated by applying a suitable transformation to 6. Multiple simulated versions of the missing data under

6 = 6 , however, would not be proper multiple imputations. Proper multiple imputations must reflect the

uncertainty associated with the fact that 8 is not known but merely estimated. Proper multiple imputations
can be most easily conceptualized as repeated draws from a Bayesian posterior predictive distribution for
the missing data given the observed data. LetY,, denote the observed data and Y,,, the missing data.
The posterior predictive density of Y,,, given Y, or P(Y,.IY..,), is

P(YmialYore) = j P (Yl Yora:0) P(8Y )00, (1)

where P(6]Y,,,) is the posterior density of the parameters given the observed data; in other words, the
posterior predictive distribution of the missing data is the conditional distribution of the missing data given
the observed data under an assumed 6, averaged over the posterior distribution of 6.

It is important to note that the distribution (1) is the appropriate source of multiple imputations only under
the assumption that the nonresponse mechanism is ignorable, or that the missing data are missing at
random, in the sense defined by Rubin (1976, 1987). Despite its name, missing at random does not imply
that the missing values are necessarily a simple random sample of all data values. The latter condition
is known as missing completely at random, which is only a special case of missing at random. Missing at
random requires only that the missing values be like a random sample of all values within subclasses
defined by observed data. In other words, missing at random does allow the probability that a data value
is missing to depend on the value itself, but only indirectly through quantities that are actually observed.
Throughout this analysis, we assume that the missing at random assumption holds.

Except in special cases, P(Y,,IY,.,) tends to have an intractable form, and direct simulation of Y,,, from
P(YmalYone) Can be prohibitively difficult. Itis sometimes possible, however, to simulate P(Y ,,|Y .. indirectly
as the stationary distribution of a Markov chain for which each transition step can be simulated directly.
In particular, if we can simulate missing data under an assumed parameter value 6%,

Y P(Y 0| Y et 69), @

and simulate a new parameter value under a complete-data posterior that takes Y., =YY",
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601 - P(6]Y 0, Y"), @
then alternately performing (2) and (3) beginning from some starting value 0 defines a Markov chain,

(v&2,om), (v2,0@).....(v:%,00).....
This algorithm is a special case of the Gibbs sampler (Geman and Geman, 1984; Gelfand and Smith,

1990), and it can be shown that, under very general conditions, the distribution of (Y,f".’. . e“’) approaches

the joint posterior distribution of Y, and 6, P(Y 1:61Y ore)s @8 t — 0. By taking t suitably large, Y& wil
be, for all practical purposes, a draw from the desired distribution (1).  Successive tth iterates

YO vy y&  may be regarded as proper multiple imputations.

In order to sample from the complete-data posterior in (3), one needs to apply a prior distribution to 6.
In practice, it is helpful to choose a prior from a natural conjugate family leading to a complete-data
posterior that is easily simulated. When little is known about the parameters a prior, it may also be
desirable to choose a prior distribution that is "noninformative® or relatively flat over the region of
appreciable likelihood, so that Bayesian inferences will be nearly the same as inferences based only on
the likelihood function. in our analysis, we chose the prior

p(x,B.E) <[Er*"2.

This prior is improper; it is not a true probability distribution because its integral over the parameter space
is not finite. This prior assumes that the cell probabilities =, are uniformly distributed over the unit interval

subject to the constraint 2‘3_1 x, = 1, and thatthe regression coefficients in p are uniformly *distributed”

over the entire real line (which is, of course, technically impossible). The exponent of -(q+1)/2 for the
determinant of £ was chosen by appealing to the Jeffreys invariance principle (e.g., Press 1982). Under
this prior, the complete-data posterior distribution becomes the product of a Dirichlet distribution for x, an
inverted Wishart distribution for I, and a matric-variate normal distribution for p given I, all of which are
straightforward to simulate (Schafer, 1991).

42 COMPUTATIONAL PROCEDURES

We began our simulation by first finding 8 , the ML estimate of 6, using the ECM algorithm of Little and

Schiucter (1985). With the entire dataset stored in single precision and the parameters stored in double
precision, model-fitting could be accomplished on a Sun SPARCstation ELC with 168 MB of main memory
in approximately two hours. Under a very strict convergence criterion that required successive values of
all parameters to change by less than 0.01%, the ECM algorithm converged in only 58 iterations.

After ML estimation, one imputation, which we shall call Mi, was created under the assumption that

@ =6 . This initial set of imputed values cannot be regarded as one of the multiple imputations for

purposes of inference because it fits the data "too well"—i.e., it does not reflect any uncertainty associated
with the estimation of 6. Nevertheless, the MI, series was valuable in that it provided a set of typical
imputes to examine the adequacy of the model.
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Muttiple imputations were generated by the iterative simulation scheme described above. A single Markov

chain was started at 6 =6 and allowed to run for 400 iterations. Every 40th value of Y e in the

Markov chain was taken to be an independent draw from the stationary distribution. In this way, ten sets
of imputations, which we shall call Ml,, Ml,., Ml,, were produced. The entire simulation took
approximately 30 hours on a dedicated SPARCstation ELC.

The sequence MI,, Ml,,, MI,, can be considered proper multiple imputations only if the Markov chain
achieves approximate stationarity (independence of the starting value) by 40 steps. Convergence to
stationarity is difficult to assess, especially because of the high dimensionality of Y,,, and 6, but we
informally monitored convergence by inspecting time-series plots of a few selected scalar functions of the
parameter. Plots of marginal means of the "continuous" variables, given by

b
E(Z,le) = ?:‘: Fabg)

for j=1,2,~,23, and a plot of the: loglikelihood function, are shown in Figure 2. These plots show litte
long-range dependence, suggesting that for most purposes, the algorithm probably "converges” well within
40 iterations. The one notable exception is the mean of AE7; this item was 62.4% missing due to a skip
pattern in the questionnaire. The long-range dependence in this plot suggests that the ten imputations
for AE7 are somewhat correlated and could understate the missing-data uncertainty for this variable. AE7
is not a variable of primary interest in this study, but it is somewhat correlated with total serum cholesterol
LGTCRES (in Table 5, the partial correlation is -.35), which is of primary interest. The lack of stochastic
convergence with respect to some aspects of the distribution of AE7 could mean that the multiple
imputations for total serum cholesterol are slightly correlated, and that multiple-imputation inference for this
variable based on Mi,, Ml,,--, Ml,; could understate the actual uncertainty.

5. EXPLORATORY ANALYSES OF THE IMPUTED DATA

5.1 GRAPHICAL DISPLAYS

This section presents some graphical displays and exploratory analyses of the imputed values. These are
not intended to be a comprehensive evaluation; rather, the displays and discussion here are meant to be
merely representative of the evaluations one could perform, and it is hoped that they convey some of the
essential features of the imputation method.

Rathar than examining all ten sets of multiple imputations, which would have baen very tedious, we focused
our attention on set Ml,. Set Mi,, although it is not one of the sets intended for use in multiple-imputation
inference, is a natural choice for diagnostic analyses. MI, was produced under the ML estimate for 6,
whereas MI,-Ml,, incorporate variability of the parameters about the ML estimate. Consequently, M,
represents the "best" fit of the model to the observed data; if examination of M, reveals serious lack of fit,
then the multiple imputations Ml,-Ml,, should look even worse. On the other hand, any discrepancies
between Mi, and M!,-Ml,, might be due not to failings of the model, but merely to sampling variability.

Figure 3 displays histograms of the observed data, along with histograms of the imputed values in Mi,, for
the 23 variables in the dataset subject to nonresponse. These 23 variables were all modeled as
continuous even though seven of them are actually categorical; after imputation, the continuous imputes
for these seven categorical variables were rounded off to the nearest categories. The general agreement
between the marginal distributions of the observed and imputed values for most variables is quite striking.
Since the model under which we are imputing assumes only that the missing data are missing at random
rather than the more restrictive missing completely at random, the fact that the marginal distributions of the
imputed values do not pracisaly match the observed marginals is not necessarily evidence of model failure,
but could be due to the fact that the cases with missing values differ systematically from the rest of the
sample on their observed characteristics.  Surprisingly, though, Figure 3 shows that marginally, the
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imputed values do match the observed values quite well for most variables, suggesting that the missing
data may be approximately missing completely at random.

For interview variable AF10 (heart attack ever diagnosed?), the proportion of 1's in the imputed data is
smaller than the proportion of 1's in the observed data, which could indicate that the normal model is not
providing a good fit to this highly skewed dichotomous variable. For some of the blood pressure readings
(ike LGASYS), the imputed values are notably less skewed than the observed values, which is not
surprising given the normal model. The histogram for observed values of LGAHT has an unusual shape
because self-reported heights were recorded to the nearest inch: rounding and heaping gives this histogram
a multimodal appearance, whereas the imputed values of LGAHT have a more normal appearance.

A good imputation method should accurately preserve not only the marginal distributions of the variables
involved, but the relationships between variables as well. Selected scatterplots of pairs of MEC variables
are displayed in Figure 4, separating the cases into those that had both variables observed and those that
had either or both imputed. Figure 4 (a) plots the following pairs of body measurements: AHT versus HT,
AWT versus WT, and WST versus BUT; all variables are plotted on the log scale, but axes are labeled in
inches and pounds. Figure 4 (b) plots four pairs of systolic versus diastolic blood pressure readings (one
from the interview, three from the MEC examination) with systolic blood pressures plotted on a log scale.
Figure 4 (c) plots total serum cholesterol versus HDL cholesterol, both on the log scale. Inspection of 4
(a) reveals a small number of unusual outliers; these cases contained gross measurement errors which
escaped the editing process described in Section 3.1. In each case, one of the recorded body
measurements was highly erroneous, and the imputation procedure attempted to fill in the missing values
in a manner consistent with those erroneous measurements. Except for these few unusual cases, the
imputation model seems to have accurately preserved the correlations between these pairs of variables.
Some of the more subtle non-normal features of the observed data, however, were not preserved in the
imputed values--the trailing observations in the upper right-hand corner of the (WST, BUT) plot, for
example.

Evidence of model failure for a particular variable could come not only by comparing the distributions of
observed and imputed values across the whole sample, but within subclasses defined by other variables
in the model. We generated a large number of plots of observed and imputed values within meaningful
subgroups that were expected to be somewhat homogeneous with respect to the variables of interest, but
that were still large enough to produce interpretable histograms and scatterplots.  Quite generally,
however, we found that the imputed values tended to mimic the observed values remarkably well, even
within very fine subclasses of the population.

5.2 MULTIPLY-IMPUTED INTERVAL ESTIMATES

Using techniques described by Rubin (1 987) for multiple-imputation inference about scalar estimands, we
calculated standard errors and interval estimates for a number of quantities of interest based on the ten

imputations Ml,-Ml,;,. Let Q denote a scalar quantity to be estimated. Let Q and U, denote a
complete-data point estimate and variance estimate for Q, respectively, calculated from the ith imputed
dataset, i=1,2,...,m. In atypical survey setting, 6, will be a weighted estimate (e.g., a Horvitz-Thompson

estimate) and U, will be calculated by some linearization or replication-based method that takes into account
the complex sample design. When m multiple imputations are available, the natural point estimate for Q
is simply

the average of the m complete-data point estimates.
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The variance estimate associated with (-),,, has two components. The within-imputation component,

U, is simply the average of the complete-data variance estimates,

—-— 1’"
Uu,=—) U,
m mPE‘ )

and the between-imputation component, B,, is the sample variance of the m complete-data point estimates,

The total vanance, T,, is defined as
T,=U,+(1+m™)B_,

with the m" included for technical reasons. A 100(1-a)% interval estimate is formed by taking

Q, t t,(t-a/2) T, where t,(p) denotes the 100pth percentile of the t distribution with v degrees of
freedom, and

- 2
mU,,

m+1)8,
The degrees of freedom v lend insight into the efficiency of multiple imputation. A fully efficient interval

v -(m-1)[1 +

estimate would be based on m=c imputations, would take T, = U,,, + B, , and would use the normal

distribution rather than t,. Sincet, approaches & standard normal as v—, a large value of v suggests that
the normal approximation would work well because the between-imputation component of variance B, is
well-estimated.

More insight into efficiency is provided by the it relative increase in variance due to nonresponse,
r, =(1 +m)B_JU_,
and the fraction of missing information due to nonresponse,

rn, +2/(v +3)
,*t1
The value of r,, is the fraction by which a typical variance estimate from a singly-imputed dataset,

approximated by U, , would need to be increased to account for missing-data uncertainty; and yis an

estimate of the proportion of total information (in the sense of Fisher) about Q in the complete data
(Yooe: Yma) that is contained in Y,,,. The total variance T, is approximately proportional to (1 + y/m), which
implies that uniess y is large, an inference based on a small number m of imputations is nearly as efficient
as an inference based on m=e imputations. For example, if the fraction of missing information is 15%, then
an inference based on m=3 imputations would have a total variance estimate of only about (1+.15/3)=1.05
times as great as T_. Hence, unless v is large, there tends to be little advantage to using more than a
small number of multiple imputations.
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Multiple-imputation results for means of six MEC variables within categories of race/ethnicity are displayed
in Table 6. The complete-data point estimates Q, were caiculated using basic survey weights (i.e., inverse
probabilities of selection), without the adjustments for poststratification that will ultimately be incorporated.
Complete-data variance estimates U, were calculated with SUDAAN software (Shah et al., 1991) using
linearization-based methods. Table 8 displays the within-imputation component of variance and the total
variance on the standard deviation scale. For purposes of comparison, the table also displays Q, and U,,
the point and variance estimates from imputation set Mi,.

TABLE 6. Multiple-imputation resuits for means of six MEC variables within categories
of race/ethnicity. All estimates are calculated using basic survey weights (inverse
probabilities of section).

Q, U 0"2 Q, U 1‘5 T 1‘5 100r,, v 100y

Height (cm)

White/other 168.33 0.207 168.25 0.201 0.206 57 3041 55

Black 168.22 0.182 168.22 0.192 0.200 8.2 15673 7.7

Mex-Amer 163.01 0.182 163.04 0.195 0.205 11.0 917 1041
Weight (kg)

White/other 73.91 0.388 73.85 0.364 0.380 9.2 1258 8.6

Black 77.62 0.494 77.58 0.506 0.542 148 543 13.2

Mex-Amer 71.98 0.481 72.20 0.451 0.485 6.3 2610 59
Avg.systolic BP

White/other 121.33 0.517 121.46 0.487 0.515 118 814 107

Black 124.25 0.717 124.18 0.709 0.766 16.6 446 146

Mex-Atnher 118.14 0.678 117.94 0.647 0.675 8.8 1368 8.2
Avg. diastolic BP

White/other 72.75 0.382 72.66 0.395 0.416 10.8 938 10.0

Black 74.48 0.462 74.63 0.473 0.503 13.2 663 119

Mex-Amer 7113 0.526 71.17 0.519 0.536 6.4 2500 6.1
Total cholesterol

White/other 205.88 0.962 206.04 1.036 1.118 16.3 459 144

Black 200.76 1.056 201.28 0.960 1.075 25.3 221 209

Mex-Amer 200.16 2.402 200.28 2.447 2.490 36 7526 35
HDL cholesterol

White/other 50.97 0.337 51.00 0.388 0.414 14.1 588 127

Black 55.95 0.510 55.95 0.462 0.514 23.7 244 19.8

Mex-Amer 50.07 0.801 50.03 0.505 0.524 7.6 1827 74

One striking feature of Table 6 is the large values of v, which suggest that the between-imputation
components of variance tend to be very well estimated. in contrast, we have good reason to suspect that
the within-imputation components of variance are estimated rather poorly. Design effects (not shown)
provided by SUDAAN displayed erratic behavior across the ten sets of multiple imputations (Litle and
Rubin, 1992). For example, the design effects for mean HDL cholesterol among Mexican-Americans across
MI,-MI,, ranged from 1.36 to 2.28, even though the low fraction of missing information (7.8%) for this
quantity indicates that essential features of the sample data for this variable were changing very little across
the imputation sets. The great variability we observed in the Us suggests that the methods of
design-based variance estimation currently used for NHANES are inherently unstable, due perhaps to the
small number of primary sampling units. Keeping this in mind, we interpret the results in Table 6 only with
caution.
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Another striking feature of this table is that the fractions of missing information y are quite small, ranging
from 20.9% down to 3.5%, even though the MEC variables in this dataset were missing at rates in excess
of 30%. The fact that the fraction of missing information is often dramatically lower than the fraction of
missing observations indicates that the imputation model was very effective in gleaning information about
the missing data from the observed data. Comparing these values of y with the multiple correlation
coefficients R? from the exploratory regressions (Table 3), we see that y tends to be lowest for the MEC
variables that can be predicted from other variables with the greatest relative precision. This suggests that
the gains in precision from a good imputation model, which makes intelligent use of information about Y,
available in Y,,,, can be substantial.

The relative increases in variance due to nonresponse r, in Table 6 range from 4 to 25%, so the total

variances T, tend to be not much larger than the within component l-J,,,. Hence, the multiply-imputed

interval estimates for these quantities, at least, are not much wider than single-imputation intervals. Within
smaller subdomains, however, we found that the values of r,, could be much higher. In particular, we found
that the fractions of missing information for mean cholesterol (HDL and total) within subdomains of age,
sex, and race were as high as 60%, and the intervals based on T, were up to 60% wider than intervals

based on Um .

For most uses of this dataset that we can imagine, it appears that m=10 imputations are more than enough
to permit accurate and efficient inferences (Little and Rubin, 1992). With most fractions of missing
information in the range 5-15%, it seems that m=5 or even m=3 would be adequate.

6. DISCUSSION
6.1 EFFICIENCY OF ESTIMATION

A comprehensive evaluation of this model-based multiple imputation procedure, and a comparison with the
current NHANES weighting-class adjustments, is beyond the scope of this paper. Based on the evidence
of Tables 1-6, however, it appears that for the twelve MEC variables in our study, we have achieved some
substantial improvements in efficiency. The current weighting-class adjustments ignore much of the useful
information in Y, relevant to predicting Y,,,. Our imputation method, however, was quite effective in using
the information in Y,,, as evidenced by the large discrepancies between the fractions of missing
observations near 30% (Table 1) and the fractions of missing information near 15% (Table 6). By making
intelligent predictions from Y, the imputation model is "recovering” up to half of the information in the
missing data.

Judging from the histograms and plots in Figures 3-4, the missing data in this dataset do not appear to be
far from missing completely at random. This suggests that nonresponse bias may not be a serious
problem, at least not for the twelve MEC variables in this study. The demographic and geographic
variables used to define weighting classes have some predictive power (Table 5), but the weighting class
adjustment ignores the relevant information available from the household interview, which can be
substantial. Imputation, therefore, appears to offer meaningful improvements over the weighting-ciass
adjustment in the reduction of variance.

6.2 VARIANCE ESTIMATION AND MISSING-DATA UNCERTAINITY

Once multiple imputations have been generated, it becomes a relatively simple matter to assess
missing-data uncertainty for virtually any estimand of interest. The high values of v in Table 6 suggest that
our estimates of the between-imputation component of variance are quite good.



477

Although the current NHANES weighting-class adjustments make no provisions for assessing missing-data
variance, two alternative proposals have been made in this regard. One proposal (Judkins and Winglee,
1992) involves switching the current variance estimation method from linearization, which is used by
SUDAAN, to a replication-based procedure like the jackknife. With a replication-based procedure, it may
be possible to measure missing-data uncertainty by calculating separate nonresponse-adjusted weights for
each replicate. As discussed in Section 5.2, however, we suspect that in many cases the within-imputation
or complete-data component of variance is being poorly estimated due to the small number of degrees of
freedom. Others (see Longford, 1992 and his references) have found that replication methods like the
jackknife may be inefficient and have poor sampling properties when the degrees of freedom are as small
as they are here. To attempt to measure missing-data variance by this method, in addition to sampling
variance, would almost certainly be less efficient than multiple imputation.

A second proposal for measuring missing-data uncertainty involves using imputation together with a
variance multiplier of the form
A=t
n, + R%n,

where n, is the number of respondents, n, is the number of nonrespondents, and R? is the multiple squared
correlation from the imputation model (Madow, Nisselson, and Olkin, 1983; Judkins and Winglee, 1992).
The numerator of this multiplier is the apparent sample size after imputation, and the denominator is an
effective sample size based on the predictive power of the imputation model. This type of adjustment has
some major disadvantages relative to multiple imputation. First, it appears to be limited to the estimation
of simple population means and proportions. Second, it is biased downward because it does not reflect
any uncertainty associated with the fitting of regression model; the R? from the estimated regression will
always be larger than the R? from the true regression. Finally, this type of multiplier implicitly assumes that
the same multiple regression R? should apply to all nonresponding units, i.e., that the variable in question
can be predicted with equal precision for all cases. This is clearly not the case. Consider two persons with
missing values of weight--one with height, waist and buttocks circumference all recorded, and the other with
no body measurements recorded. The R? ought to be much higher for the former. There is no simple way
to address the varying degrees of information available for predicting missing values on a case-by-case
basis, except a fully multivariate, multiple imputation procedure like the one we implemented.

6.3 THE VALIDITY OF OUR IMPUTATION MODEL

Fay (1992) and others have pointed out, quite correctly, that the validity of multiple-imputation inference
depends on how the imputations are generated; if important aspects of the data or sample design are not
included in the imputation model, anomalies may result. We believe that our imputation model does make
intelligent use of the observed data Y, including the pertinent information on sample design, by using
dummy indicators for STAND and AGE x SEX x RACE as predictors for each of the 23 variables subject
to nonresponse.

A purist might argue that to ensure validity of the multiple imputations from a design perspective, one ought
to fit a separate imputation model within each primary sampling unit (PSU), or perhaps include in the
imputation model more interactions involving STAND, We actually considered using this approach until it
became apparent that the data within PSU’s was too sparse to fit a good model, a model that satisfactorily
preserved many of the relationships that we considered as important or more important than the PSU
effects. A more elaborate solution would have involved borrowing strength across PSU's through a
hierarchical model, which corresponds to treating the PSU effects as random rather than fixed. Our model
lacks the conceptual appeal of a hierarchical model, but it was computationally much easier to work with.
Judging from Table 5, the main effect of STAND seems to account for at most .282=8% of the variance in
the MEC variables. Our experience suggests that higher-order interactions involving STAND would be of
a smaller magnitude than the main effects, and would account for an even smaller portion of the
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variance. We do not believe that including more interactions, fitting separate models for each PSU, or a
hierarchical approach would have given answers substantially different from what we obtained with our
relatively simple model.

As discussed in Section 5.2, we believe that in this application, the between-imputation components of
variance are far better estimated that the within-imputa\-tion (i.e., complete-data) components of variance.
If the multiple-imputation variance estimates of Table 6 are not to be believed, it is not because the
imputation model and simulation procedures are flawed, but because SUDAAN and the classical
design-based variance estimation methodology is inadequats in this setting. Strengthening the techniques
of complete-data variance estimation, in addition to properly reflecting missing-data uncertainty, is also an
important priority (Little and Rubin, 1992).

6.4 COMPUTATIONAL CONSIDERATIONS

The advantages of model-based multiple imputation over the current NHANES weighting-class methodology
must be weighed against increased computational demands. Weighting-class adjustments, at least as they
are carried out now, do not involve explicit probability modeling of the data; no model fitting or simulation
is needed; and nonresponse adjustments for all variables are made at once through a single set of weights.
Computationally, then, weighting-class adjustments are much simpler to implement. On the other hand,
weighting-class adjustments do not address the problem of item nonresponse, which is a small but
non-negligible part of the NHANES missing-data problem. Ad hoc methods for dealing with item
nonresponse, such as hot-deck imputation, are complex and difficult to implement in multivariate datasets
with complex patterns of missingness. Our method of model-based imputation solves the problems of both
unit and item nonresponse simultaneously.

6.5 THE IMPORTANCE OF THIS WORK

This work, to our knowledge, is the first fully Bayesian application of multiple imputation in a multivariate
survey setting, where multiple imputations are drawn from a posterior predictive distribution for Y, given
Y.ue Under an explicit model. Previously, Kennickell (1991) has applied Markov-chain simulation to create
multiple imputations for over 200 variables in a large muitivariate database. His work bears some
important similarities to ours, but it does not include an explicit specification for the full joint probability
distribution of the complete data.

We believe this work represents an important advance in the practice of survey nonresponse adjustments.
Using state-of-the-art techniques, we were able to multiply impute a dataset with 27 variables and 12,392
observations without much difficuity. It does not appear possible at present to muitiply impute the entire
NHANES survey; at least it is not possible to impute all variables at once under a general multivariate
model. It is evident, however, that newly developed techniques of simulation, and our ever-increasing
computational power, are providing an excellent set of tools for handling incomplete survey data, and that
our capabilities in this area will continue to increase in the years ahead.
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FIGURE 2. Time-series plots of marginal means of 23 "continuous" variables of 400
iterations of the Markov chain simulation. Shown also is a time-series
plot of the loglikelihood function.
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FIGURE 3. Marginal histograms of observed values and imputed values generated
under the imputation model, set Mi,
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FIGURE 3. Marginal histograms of observed values and imputed values generated
under the imputation model, set (continued)
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FIGURE 3. Marginal histograms of observed values and imputed values generated
under the imputation model, set (continued)
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FIGURE 4da. Selected bivariate scatterplots of body measurements for cases having
both variables observed, and cases having one or both variables imputed, set Mi,

Both Observed Either Imputed

80
50 60 80
£

8
= =
T g | T s
o | =]
- -
40 50 60 70 80 40 50 60 70 80
AHT AHT

Either Imputed

8 4 8 ’

- -
- ;

g | g

.
8 2 L
50 100 200 300 50 100 200 300
AWT AWT
Both Observed Either Imputed

R R

2 g 3
— [
2 ¢ 38 9

8 8

20 30 40 50 60 20 30 40 50 60



486

FIGURE 4b. Bivariate scatterplots of systolic versus diastolic blood pressure for
cases having both variables observed, and cases having one or both variables
imputed, set M,
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FIGURE 4c. Bivariate scatterpiots of total serum cholesterol versus HDL cholesterol
for cases having both variable observed, and cases having one or both variables
imputed, set Ml,
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